پیش بینی قیمت مسکن برای اهواز:مقایسه مدل هدانیک با مدل شبکه عصبی مصنوعی

thesis
abstract

در این تحقیق برای یافتن یک مدل بهینه جهت پیش بینی قیمت مسکن در کلان شهر اهواز مقایسه ای بین دو مدل هدانیک وشبکه عصبی مصنوعی انجام گرفته است. در این تحقیق از تابع هدانیکی نیمه لگاریتمی استفاده شده است نتایج مدل هدانیک نشان داد از 27 متغیر مدل 18 متغیر معنی دار بودند و با مقایسه نتایج و مقدار برآوردها، قیمت مسکن در اهواز بیشتر از عوامل فیزیکی و ساختاری تاثیر می پذیرد. برای مقایسه دو مدل از لحاظ توانایی پیش بینی از معیارهای r2، mse، rmse، mape، mae و ضریب tic استفاده شده است. مقایسه کلیه معیارها نشان دادند که بهترین عملکرد متعلق به شبکه عصبی مصنوعی (ann) در مقایسه با رگرسیون هدانیک است. همچنین مدل شبکه عصبی مصنوعی خطای کمتر و در نتیجه کارایی بیشتری در پیش بینی قیمت مسکن در شهر اهواز داشته است. برای بررسی این مسئله که آیا تفاوت در دقت پیش بینی مدل های مختلف از نظر آماری نیز معنی دار است با استفاده از آزمون مرگان-گرنجر-نیوبلد (mgn) توانایی دو مدل در پیش بینی قیمت مسکن در شهر اهواز مقایسه شده است. نتایج حاصل از آزمون نشان داد فرضیه صفر آزمون مبنی بر عدم برابری قدرت پیش بینی دو مدل و همچنین توانایی مدل ها برای پیش بینی قیمت مسکن رد نمی شود، از این رو تفاوت قدرت پیش بینی دو مدل به لحاظ آماری نیز معنی دار است.

First 15 pages

Signup for downloading 15 first pages

Already have an account?login

similar resources

پیش‌بینی قیمت مسکن برای شهر اهواز: مقایسه مدل هدانیک با مدل شبکه عصبی مصنوعی

Determination and the estimation of the house price in urban areas has a great importance for governments, individual and state investors and common people. The mentioned estimation can be used in future planning and decision making of many urban and regional policies. In this regard, due to the vital importance of the house price in recent decades powerful and effective functions have been use...

full text

پیش بینی قیمت مسکن در شهر تبریز:کاربرد مدل های قیمت هدانیک و شبکه عصبی مصنوعی

هدف اصلی این مطالعه مقایسه قدرت پیش بینی دو مدل رگرسیون هدانیک و شبکه عصبی مصنوعی (ann) و تعیین یک مدل بهینه برای پیش بینی قیمت هدانیک مسکن درکلان شهر تبریز می باشد. نتایج تخمین تابع قیمت هدانیک بیانگر آن است که اکثر متغیرها معنا دار بوده و دارای علامت مورد انتظار می باشند. عوامل فیزیکی بیشتر از عوامل مکانی(محیطی و دسترسی) قیمت واحدهای مسکونی را تحت تأثیر قرار می دهند. همچنین، از بین ویژگی های ...

full text

مدل ترکیبی شبکه های عصبی مصنوعی پیش خور و خود سازمانده کوهونن برای پیش بینی قیمت سهام

این مقاله ضمن ارائه مدلی ترکیبی از شبکه های عصبی مصنوعی، به بررسی توان پیش بینی کنندگی آنها در مقایسه با مدل های منفرد می پردازد. در این بررسی، با استفاده از شبکه های عصبی ترکیبی متشکل از شبکه های پیش خور و خود سازمانده کوهونن اقدام به پیش بینی قیمت سهام شده است. نتایج آزمایشات محاسباتی در پیش بینی قیمت سهام شده است. نتایج آزمایشات محاسباتی در پیش بینی قیمت سهام در بازار بورس تهران نشان می دهد ...

full text

پیش‌بینی قیمت مسکن در شهر تبریز:کاربرد مدل‌های قیمت هدانیک و شبکه عصبی مصنوعی

هدف اصلی این مطالعه مقایسه قدرت پیش بینی دو مدل رگرسیون هدانیک و شبکه عصبی مصنوعی (ANN) و تعیین یک مدل بهینه برای پیش بینی قیمت هدانیک مسکن درکلان‌شهر تبریز می باشد. نتایج تخمین تابع قیمت هدانیک بیانگر آن است که اکثر متغیرها معنا دار بوده و دارای علامت مورد انتظار می‌باشند. عوامل فیزیکی بیشتر از عوامل مکانی(محیطی و دسترسی) قیمت واحدهای مسکونی را تحت‌تأثیر قرار می دهند. همچنین، از بین ویژگی‌ها...

full text

ارزیابی مدل هیبرید شبکه عصبی مصنوعی-پانل دیتا در پیش بینی قیمت صادرات خشکبار ایران

در بسیاری از مطالعات برای پیش بینی متغیرهای اقتصادی اغلب از روش های کمی مبتنی بر داده های سری زمانی یا مقطع زمانی استفاده می شود. مطالعات سری زمانی و مقطع زمانی ناهمگنی کشورها را کنترل نمی کنند و همواره ریسک به دست آورن نتایج و پیش بینی های اریب دار وجود دارد. داده های پانل اطلاعات و درجه آزادی بیشتری را فراهم می آورد که این امر موجب حصول نتایج و پیش بینی های دقیق تری می شود. با توجه به سهم قاب...

full text

پیش بینی خشکسالی با استفاده از مدل تلفیقی شبکه عصبی مصنوعی- موجک و مدل سری زمانیARIMA

تبدیل موجک یکی از روش­های نوین و بسیار موثر در زمینه تحلیل سیگنال­ها و سری­های زمانی است. در این روش سیگنال شاخص بارش استاندارد (SPI) با استفاده از موجک مادر منتخب تجزیه شده، داده­های حاصل به­عنوان ورودی مدل شبکه عصبی مصنوعی در نظر گرفته شده و یک مدل تلفیقی برای پیش­بینی خشکسالی ارائه می­گردد. در این تحقیق، از شبکه­های عصبی مصنوعی پرسپترون چند لایه (MLP) و تابع پایه‌ای شعاعی ((RBF، سری زمانی AR...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


document type: thesis

وزارت علوم، تحقیقات و فناوری - دانشگاه شهید چمران اهواز - پژوهشکده علوم اجتماعی و اقتصادی

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023